metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Takashi Kato, Tatsuya Fujii, Tomohiro Ozawa, Yasuhiro Funahashi and Hideki Masuda*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

Correspondence e-mail: masuda.hideki@nitech.ac.jp

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.025 wR factor = 0.052 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[*N*,*N*-Bis(carboxymethyl)-L-leucinato]-(1,2-ethanediamine)cobalt(III) monohydrate

The Co atom in the title compound, $[Co(C_{10}H_{14}NO_6)-(C_2H_8N_2)]\cdot H_2O$, has an octahedral geometry with tetradentate N,N-bis(carboxymethyl)-L-leucine (L-bcmle) and bidentate ethylenediamine (en) ligands. The complexes and water molecules are linked *via* N-H···O and O-H···O hydrogen bonds, forming layers perpendicular to the *c* axis. Between these hydrophilic layers, hydrophobic bilayers are formed by the isobutyl groups of the L-bcmle ligands.

Received 10 November 2005 Accepted 5 December 2005 Online 14 December 2005

Comment

High efficiency and specificity of biological reactions are achieved by molecular recognition utilizing steric repulsion and weak non-covalent interactions, such as hydrogen bonding, electrostatic, hydrophobic and aromatic ringstacking interactions (Rebek, 1990). In order to understand such non-covalent interactions of the molecular recognition sites of proteins, we have studied inorganic complexes containing amino acid derivatives as model compounds (Jitsukawa *et al.*, 1994; Kumita *et al.*, 2001). In this paper, we report the crystal structure of the title compound, $[Co^{II}-(L-bcmle)(en)]\cdotH_2O$, (I). The L-bcmle ligand was derived from the natural amino acid L-leucine (L-Leu).

For complex (I), there are three possible types of stereoisomers, depending on the position of the C^{α} site and the orientation of the isobutyl group of the L-Leu unit in L-bcmle. Our preparation method facilely gave the red single crystalline product, (I) (Fig. 1). ¹H NMR spectroscopic analysis also suggested that (I) was predominant in the synthetic solution through the procedure. The coordination mode of L-bcmle in (I) is the same as those observed in the crystal structures of analogous Co^{III} (Jitsukawa *et al.*, 1994; Kumita *et al.*, 1998, 2001) and Cr^{III} complexes (Borcarsly *et al.*, 1990). The CD spectrum of (I) in aqueous solution exhibited characteristically large positive and negative bands in the *d*-*d* region, which are induced by the coordination geometry and the absolute configuration at the asymmetric centres.

© 2006 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

A view of the molecular structure of (I), showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In (I), the Co^{III} centre has a distorted octahedral geometry (Table 1). The Co–O and Co–N bonds are slightly shorter than the generally reported values of Co–O(carboxylate) = 1.894-1.918 Å and Co–N(amine) = 1.938-1.977 Å (Orpen *et al.*, 1989), and are in the range of the reported values of Co–O(carboxylate) = 1.854 (9)–1.947 (3) Å and Co–N(amine) = 1.907 (4)–1.962 (3) Å for the corresponding Co^{III} complexes with nitrilotriacetic acid analogues (Jitsukawa *et al.*, 1994; Kumita *et al.*, 1998, 2001; Swaminathan *et al.*, 1989).

Intermolecular hydrogen bonds (Table 2) between the $[Co^{III}(L-bcmle)(en)]$ and H_2O molecules form hydrophilic layers parallel to the (001) plane (Fig. 2). The isobutyl groups of the L-bcmle ligands are located outside the hydrophilic layers, and interdigitation of the alkyl chains forms a bilayer structure.

Experimental

The tripodal ligand *N*,*N*-bis(carboxymethyl)-L-leucine (H₃bcmle) was synthesized from L-leucine according to the literature method of Uehara *et al.* (1970). K₂[Co(bcmle)(CO₃)] was obtained from the reaction of K₃[Co(CO₃)₃] and H₃bcmle. To a 0.2 *M* aqueous solution (10 ml) of K₂[Co(bcmle)(CO₃)] was added an equimolar amount of ethylenediamine, neutralized with HCl, and the resulting mixture was stirred at 323 K for 12 h under conditions of pH 6–7 in the presence of active charcoal. After filtration, the reaction mixture was purified using a QAE Sephadex A-25 column (Cl⁻ form) in water, eluting a non-adsorbed red–violet solution of the product. Evaporation of the reddish-violet solution and recrystallization of the precipitated product in water gave the red crystals of (I) suitable for X-ray analysis (yield 4.2%).

Crystal data

$[Co(C_{10}H_{14}NO_6)(C_2H_8N_2)] \cdot H_2O$
$M_r = 381.27$
Orthorhombic, $P2_12_12_1$
a = 7.4740 (4) Å
b = 7.3532 (4) Å
c = 28.8604 (16) Å
$V = 1586.10 (15) \text{ Å}^3$
Z = 4
$D_x = 1.597 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 5217 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$ T = 173 (1) K Prism, red 0.19 × 0.16 × 0.16 mm

Figure 2

The molecular packing of (I), viewed along the b axis. H atoms bonded to C atoms have been omitted for clarity. Broken lines indicate the hydrogen bonding interactions.

Data collection

Rigaku Mercury CCD area-detector
diffractometer
ω scans
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
$T_{\min} = 0.761, \ T_{\max} = 0.799$
12559 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.052$ S = 1.02 3626 reflections 215 parameters H atoms treated by a mixture of independent and constrained refinement 3626 independent reflections 3261 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.030$ $\theta_{max} = 27.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -37 \rightarrow 27$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0037P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.40 \text{ e}^{A^{-3}}$ $\Delta\rho_{min} = -0.27 \text{ e}^{A^{-3}}$ Absolute structure: Flack (1983), with 1510 Friedel pairs Flack parameter: 0.001 (11)

Table 1

Selected geometric parameters (Å, °).

Co1-O2	1.8971 (12)	Co1-N1	1.9464 (14)
Co1-O3	1.8912 (12)	Co1-N2	1.9648 (15)
Co1-O6	1.8979 (12)	Co1-N3	1.9281 (14)
O2-Co1-O3	92.30 (5)	O3-Co1-N3	93.26 (6)
O2-Co1-O6	88.07 (5)	O6-Co1-N1	87.11 (5)
O2-Co1-N1	88.17 (5)	O6-Co1-N2	90.56 (6)
O2-Co1-N2	173.37 (6)	O6-Co1-N3	94.56 (5)
O2-Co1-N3	87.99 (5)	N1-Co1-N2	98.24 (6)
O3-Co1-O6	172.17 (5)	N1-Co1-N3	175.75 (6)
O3-Co1-N1	85.09 (6)	N2-Co1-N3	85.66 (6)
O3-Co1-N2	89.95 (5)		

Table 2		
Hydrogen-bond	geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline & & \\ O8-H23\cdots O7^{i} \\ O8-H24\cdots O5^{ii} \\ N2-H16\cdots O4^{i} \\ N3-H21\cdots O6^{iii} \\ \end{array}$	0.80 (2)	2.25 (2)	3.040 (2)	166
	0.77 (2)	2.06 (2)	2.744 (2)	147
	0.92	2.03	2.922 (2)	162
	0.92	2.02	2.8973 (19)	160

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

All H atoms were located in difference Fourier maps. The positions of the water H atoms were refined freely, with $U_{iso}(H) = 1.2U_{eq}(O)$. All other H atoms were constrained to ride on their parent atoms, with N-H = 0.92 Å and C-H = 0.98–1.00 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$. Each methyl group was allowed to rotate freely about the C-C bond. The absolute structure determination based on the Flack (1983) parameter is consistent with the known absolute configuration of L-leucine (Voet & Voet, 1990).

Data collection: *CrystalClear* (Rigaku, 1999); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2005); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *Raster3D* (Merritt & Bacon, 1997) and *MERCURY* (Bruno *et al.*, 2002); software used to prepare material for publication: *CrystalStructure*.

This work was supported partly by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Borcarsly, J. R., Chiang, M. Y., Bryant, L. & Barton, J. K. (1990). *Inorg. Chem.* **29**, 4898–4907.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jitsukawa, K., Morioka, T., Masuda, H., Ogoshi, H. & Einaga, H. (1994). Inorg.
- *Chim. Acta*, **216**, 249–251. Kumita, H., Jitsukawa, K., Masuda, H. & Einaga, H. (1998). *Inorg. Chim. Acta*, **283**, 160–166.
- Kumita, H., Kato, T., Jitsukawa, K., Einaga, H. & Masuda, H. (2001). Inorg. Chem. 40, 3936–3942.
- Merritt, E. A. & Bacon, D. J. (1997). Methods in Enzymology, Vol. 277, Macromolecular Crystallography, Part B, edited by C. W. Carter & R. M. Sweet, , pp. 505–524. New York: Academic Press.
- Orpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.
- Rebek, J. Jr (1990). Angew. Chem. Int. Ed. Engl. 29, 245-255.
- Rigaku (1999). Crystal Clear. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Rigaku/MSC (2005). Crystal Structure. Version 3.7.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Swaminathan, K., Sinha, U. C., Chatterjee, C., Phulambrikar, A., Padmanabhan, V. M. & Bohra, R. (1989). Acta Cryst. C45, 566–568.
- Uehara, A., Kyuno, E. & Tsuchiya, R. (1970). Bull. Chem. Soc. Jpn, 43, 414– 418
- Voet, D. & Voet, J. (1990). Biochemistry, pp. 59-74. New York: John Wiley.